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Abstract

In the field of text mining, pre-trained language models (PLMs) have
emerged as powerful tools for various downstream tasks [10, 2]. How-
ever, their performance can significantly degrade in scenarios with limited
data, known as few-shot scenarios [1]. Prompt-based tuning is effective
in addressing this challenge by providing a structured approach to adapt
PLMs with minimal data [5]. One crucial component of prompt-based
tuning is the verbalizer, which maps model outputs to their correspond-
ing labels. In this project, we propose two techniques, Instance Mean
Initialization and Shared Embedding Space, to enhance the performance
of the prototypical verbalizer (ProtoVerb) in few-shot learning tasks. In
our experiments, we conducted using comprehensive few-shot learning se-
tups, which demonstrate the effectiveness of our proposed method. We
evaluate our approach on various experimental settings and report clas-
sification accuracy as the evaluation metric. Our implementation, based
on the PyTorch framework, the Huggingface transformers, and the Open-
Prompt toolkit, uses the RoBERTa-large model as the PLM backbone.
Through experimentation and analysis, we demonstrate the effectiveness
of our proposed method in enhancing classification performance in few-
shot scenarios, thereby contributing to the advancement of prompt-based
tuning methodologies.
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1 Introduction

With the increasing volume of documents, text data has become the most com-
mon data type of information. Within such a context, text mining is consid-
ered as having a great value for business [13]. Pre-trained language models
(PLM), which have received attention from related parties, has achieved sig-
nificant progress on text mining [10]. With huge parameters and fine-tuning
techniques, PLM can perform well on various downstream tasks [10], such as
question answering and reading comprehension [2]. However, when it comes to
a few-shot scenario, where there are only a few data samples available for the
specific task, many models may perform even worse than human [1]. Meanwhile,
few-shot scenario may be common in practice, as it is highly costly to guarantee
that there are always enough data samples for each class included in the data
sets. Therefore, how to make PLM to maintain a satisfactory performance in a
setting of lacking data becomes a meaningful problem.

Prompt-based tuning may provide a good solution to the above problem. By
setting a new and appropriate prompting function, it allows the learning to
adapt to those scenarios with only a few labeled data available [15]. For dif-
ferent tasks, the tuning method creates different strings as prompt templates,
which usually include an input slot and an empty answer slot [15]. After the
input text is entered into the input slot, an intermediate answer, which will be
mapped to the output label, would be generated at the answer slot [15]. In
this way, the task is converted to a masked problem for modeling [11]. This
follows the idea that giving a textual description to elaborate the task may help
to problem solving with a limited number of samples available [19]. Also, to
maximize the score of the language model and get the best performance, the
optimal intermediate answer is searched from the set of all possible answers [15].

A significant step in prompt-based tuning is to perform mapping between the
output answer to the corresponding label. The process is conducted by verbal-
izer [6]. Since verbalizer determines the performance of prompt-based tuning [6]
at a certain level, it is critical to select a proper method to create an effective
verbalizer for prompt-based turning [3].

At the current stage, verbalizer design methods adapted by most existing works
mainly includes 3 categories, which are manual verbalizer design, discrete ver-
balizer design, and soft verbalizer design methods [6]. However, prototypical
verbalizer, which does not rely on much human efforts or a large data set, is
claimed to have a much more outstanding performance than current discrete ver-
balizer and soft verbalizer [3]. For instances of each class, prototypical verbalizer
calculates the central points of them as the prototype [3]. Then, verbalizer is
trained for the objectives that instances of the same class can be put together,
instances belonging to different class can be separated, and any prototype can
be located on the center of all instances that belong to the same class that the
prototype belongs to [3]. The idea of prototypical verbalizer may be similar to
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the K-Means clustering algorithm [12] at a certain level, as both are trained
to group similar instances while trying to put centroids, or prototypes, of the
groups to be the center of that group.

Although it is declared that prototypical verbalizer has an excellent perfor-
mance, there are also limitations existing in the mechanism of its design. One
limitation is inadequate use of information in the initialization stage. Regard-
less of the contents of class labels, the prototypes are randomly initialized at
the first step [3]. However, this may lead to more time and computing cost in
training process, as the initialization of prototypes embedding, which does not
make use of any semantic information of class labels in the training set, is likely
to give an initialization that is far from the optimization result. Based on the
understanding of the limitation, our project focuses on the improvement of pro-
totypical verbalizer design. We propose 2 novel designs that bring performance
boost. First, we propose an initialization technique called the Instance Mean
Initialization, which utilizes the semantic information of the class labels and
produce the initial values of the prototype embeddings. Second, we propose that
the prototype embedding space can be Shared with the Embedding Space of
the word embeddings produced by the PLM. After comprehensive experiments,
both innovations demonstrate strong performance and more importantly convey
key insights to the design and learning of verbalizers in general.

2 Related Work

2.1 Prompt-based Tuning in Few-shot Scenarios

In the early phase of PLM development, PLM handles specific tasks by pretrain-
ing and finetuning [5]. However, in scenarios with few data samples available,
PLM may work better with prompts [5]. Normally, the pipeline of prompt may
contain a string template and a verbalizer [5]. The template wraps the input
text and output an intermediate answer text [15], while the verbalizer bridges
the answer to the label [6]. Previous research have been conducted from various
related aspects, including prompt template engineering [15]. Studies related to
verbalizer will be discussed in this report.

2.2 Methods of Verbalizer Designs

Manual verbalizer, discrete verbalizer and soft verbalizer are the main three
categories of verbalizer design methods [6]. Designed by human and referred to
specific domain knowledge, manual verbalizer chooses label words to indicate
each classes [11, 3]. Experiments have shown that carefully designed manual
verbalizer can have a highly satisfactory performance over a variety of tasks [19]
[6]. Nevertheless, to design a verbalizer that can output an excellent result, it
requires the human designer to have a thorough and exact understanding of the
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domain and the specific task[6]. Meanwhile, a considerable amount of time may
be necessary to experiment and find out a satisfactory solution [6]. In addition,
since one-one mapping is adapted by manual verbalizer, the coverage of label
words is quite limited, thus leading to a biased prediction made referring to a
limited amount of information [11].

In order to save the human efforts and time cost in constructing manual ver-
balizer, discrete verbalizer design methods are proposed [6]. For each label,
discrete verbalizer design methods search for the word correspondingly from
the model vocabulary to construct the verbalizer [6]. An example of discrete
verbalizer design is automatic verbalizer search (AVS) [6], where the mapping
of labels and words is randomly initialized at the first step [18]. The improve-
ment of the mapping is performed iteratively and greedily [18] until meeting
a certain condition [6]. Another design method that can save human effort is
soft verbalizer design. To obtain better performance, soft verbalizer searches
for suitable parameter from an infinite continuous space [6]. Word-level Adver-
sarial ReProgramming (WARP) [9] is an example of soft verbalizing method.
Proposed with reference to adversarial reprogramming, WARP enters special
prompt tokens and [MASK] token into the input text [9]. Training parameters
including the word embedding of special prompt tokens and verbalizer tokens,
the model is optimized for the downstream task [9]. The soft verbalizer can
perform better than discrete ones, as it optimize on a continuous thus larger
space [6]. However, in real life, it is common to have a data set that is not
large and balanced enough for the task to perform. In such a scenario, it is
difficult to optimize enough on a discrete or continuous space, leading to the re-
sult that discrete and soft verbalizer are often less effective than manual ones [3].

Prototypical verbalizer is another design. Different from mentioned verbalizer
design methods, it does not rely on much human efforts or searching in a large
enough data set [3]. The method starts with the idea that prototype, which
is the central point of instances in a class, can represent the semantic features
of a class in a setting of few data [3]. Based on the opinions, prototype vec-
tors, if work as verbalizers, are thought to be able to make judgements that are
closed to classes determined by human [3]. Therefore, prototypical verbalizer is
proposed to automatically learn prototype vectors of each class from training
set by applying contrastive learning [3]. The representations of instances are
hidden state of [MASK] token on the last layer, which are later projected to
the embedding space to learn the prototypes [3]. With the goals that similarity
scores of instances within the same class should be higher and similarity scores
of instances belonging to different classes should be lower, as well as similarity
scores between the pair of prototype and instances of the same class should
be higher than similarity scores between prototype and instances of different
classes, the optimization objective function is defined by contrastive learning
and cosine similarity function [3]. Optimizing for the perspectives of pairs of
instance and instance and pairs of instance and prototype, it is declared that
prototypical verbalizer significantly performs better than existing discrete ver-
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balizer and soft verbalizer [3]. However, as it is mentioned, limitations still exist
for prototypical verbalizer.

3 Background

Given a pre-trained language model M, such as BERT [4] and RoBERTa [16],
we aim to tune the model M for specific downstream tasks, such as text classi-
fication, relation extraction and entity typing. Our project specifically focuses
on n-way-k -shot text classification [7].

3.1 N-Way-K-Shot Few-Shot Learning

n-way-k -shot is a basic concept in few-shot learning (FSL). The training set
for FSL picks n classes and k + q samples for each class from the meta-dataset
randomly to form a support set for training which consists of k samples for each
class and to form a query set for testing which contains q samples for each class.
So, the size of the training set should be n× (k+ q). For example, 5-way 8-shot
means that the task has 5 classes and the support set has 8 samples for each
class.

The goal is to predict the label y ∈ Y for each sample, where Y is the la-
bel set with N distinct classes. FSL is useful when the labelled dataset for a
specific task is scarce, as it allows the model to learn from a few samples per
class, rather than requiring a large labelled dataset.

3.2 Prompt-based Tuning

The vanilla prompt-based tuning transforms the text classification into a cloze-
style prediction problem by providing a prompt template, which is used to pro-
cess the original text with an extra token [5]. The prompt template typically
consists of a fill-in-the-blank style statement or question that provides context
and guidance to the model for making predictions on the text, and is customized
based on different domains.

For the original input text x , it is wrapped with a template T (·), which con-
tains a mask token [MASK] that is used to represent the position in the prompt
where the answer is expected to appear, as the prompt input T (x ). As shown
in Figure 1, x = what is the relation between speed and acceleration?, T (·) =
A [MASK] question:, then T (x ) = A [MASK] question: what is the relation
between speed and acceleration? [11]. The prompt input is first tokenized and
fed to the pre-trained language model M and then M predicts the probability
of each word v to be filled in the [MASK] token,

PM([MASK] = v|T (x)). (1)
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Figure 1: Illustration of prompt-based tuning.

To bridge the model output v and the final prediction, verbalizers serve as a
critical part of prompt-based tuning [8]. The verbalizer, which stores a set of
label words V, maps the output word v to the corresponding original label y .
Therefore, the probability of label y is

PM(y|x) = g(PM([MASK] = v|T (x))|v ∈ Vy), (2)

where Vy is the set of label words of label y and g(·) is to aggregate multiple
scores [3].

On the whole, prompt-based tuning is a useful technique for tuning PLMs to
leverage their knowledge learned during pre-training and improve their perfor-
mance on downstream tasks.

3.3 Prototypical Verbalizer

As mentioned in the previous subsection, the verbalizer is a crucial component
of the prompting model that projects the model outputs to their corresponding
labels. In this report, we focus on prototypical verbalizer (ProtoVerb) [3], which
is built directly from the training set and learns prototype vectors as verbalizers
by contrastive learning.

To learn the prototype vector, the hidden state of [MASK] token h[MASK] by
the model M is used to represent the instance and is projected to another em-
bedding space with a specific dimension. Encoded by a linear encoder W, the
instance representation of input text x becomes

v = Wh[MASK]. (3)
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To measure the similarity between two instances, the cosine similarity function
S is used, where

S(vi,vj) =
vi

∥vi∥
· vj

∥vj∥
. (4)

With the concept of instance representation and similarity function, we are
trying to achieve the goals that (1) the similarity between two instances within
the same class should be higher and that belonging to different classes should
be lower, (2) the similarity score between the instance and the prototype of its
class should be higher than that between the instance and prototype of different
classes.

For the first goal, we need to minimize the loss function for the instance-instance
pair, which is

Lins =
−1

N2K2

∑
n

∑
i,j

log
expS

(
vn
i ,v

n
j

)∑
n′,j′ expS

(
vn
i ,v

n′
j′
) . (5)

And for the second goal, we denote the set of prototypes as C = {c1, · · · , cN}.
Similarly, the loss function for the instance-prototype pair is defined as

Lproto =
−1

N2K

∑
i,n

log
expS (vn

i , cn)∑
n′ expS (vn

i , cn′)
. (6)

Therefore, the final training objective is to minimize the loss function which
combines the loss function for the instance-instance pair and for the instance-
prototype pair,

L = Lins + Lproto. (7)

During the inference, we measure the similarities between the query q and the
prototype for each class. For the class k , its probability score is

PM(yk|x) =
expS (q, ck)∑
k′ expS (q, ck′)

, (8)

and the prediction of the original input text x is defined by

ŷ = argmax
k

PM(yk|x). (9)

4 Method

As the general pipeline of prompt-based tuning has been introduced in previous
sections, this section will focus on the innovation we propose on top of the vanilla
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prototypical verbalizer (ProtoVerb) [3], as well as the motivation behind such
alterations. In short, we propose 2 novel techniques based on ProtoVerb, which
are called Instance Mean Initialization and Shared Embedding Space
respectively. Details are elaborated below.

4.1 Instance Mean Initialization

As opposed to manual verbalizers, prototypes can be regarded as aggregated hid-
den representations of all the appropriate words that would have been chosen
under a manual verbalizer setting. Taking the AG news dataset as an exam-
ple, there are 4 classes, namely {World, Sports, Business, Tech}, corresponding
to 4 types of news. Then a well-trained prototype embedding for the Sports
class should aggregate the information contained in words such as NBA, goal,
baseball, etc. Naturally, instances that belong to the same class should cluster
around their corresponding prototype embedding. In other words, a good clas-
sifier is expected to map the hidden states of the [MASK] token to a vector that
is close to the prototype embedding of its class, where the distance is measured
by cosine similarity. To this end, two loss functions are used in the original
ProtoVerb [3]. The first is the instance-instance loss, which utilizes the idea of
contrastive learning to push instances that belong to different classes away from
each other, and to pull those of the same classes near each other. The second
loss function is the instance-prototype loss, which tries to minimize the total
distance between the prototype and all the corresponding instances. Intuitively,
it forces the prototype to be situated at the center of its instances so that it
becomes a good representative of that class.

However, the vanilla ProtoVerb is not up to its full potential as it fails to lever-
age the semantics of the label words themselves. In the original ProtoVerb [3],
prototype embeddings are randomly initialized in a sense that they are indepen-
dent of the class label words. In this way, the training process will be invariant
no matter the classes are labeled as {World, Sports, Business, Tech} or {1, 2,
3, 4}. This is a huge and unnecessary waste of information because the label
words are inherently suitable to fill the [MASK] token. In fact, it is common
practice to include the class labels if a manual verbalizer is to be used.

To remedy this flaw, we propose an initialization technique that we call In-
stance Mean Initialization. Specifically, for each example in the few-shot
training set, we replace the [MASK] token in the template with its ground
truth class label word and obtain its hidden representation after feeding it to
the PLM. Then, for each class, we use the mean vector of the hidden states of
all its training examples, instead of randomly initializing the prototype em-
beddings. Formally, suppose there are n classes C = {C1, C2, ..., Cn}, and
their corresponding labels are W = {w1, w2, ..., wn}. Denote the PLM as M
and the template as T (<LABEL>, x), then given an example xi ∈ Cj where
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i ∈ {1, 2, ..., k}, j ∈ {1, 2, ..., n}, its hidden states of the label word is given by

h
(i)
<LABEL> = M(T (wj , xi)). (10)

Note that the word embeddings and the prototypes are in different vector spaces
and thus an additional linear encoder W is needed to project word embeddings
into the prototype space. Then the prototype embedding for class Cj under a
k-shot setting is initialized as

cj =
1

k

k∑
i=1

Wh
(i)
<LABEL>. (11)

With the instance mean initialization, the training process of the prototype
embeddings can be faster and less sensitive to noise.

4.2 Shared Embedding Space

Although we are able to eliminate randomness brought by the initialization of
prototype embeddings, the linear encoder W is still randomly initialized and
thus may harm the performance of the instance mean initialization technique.
Additionally, since the prototypes are learnable embeddings themselves, the ex-
tra linear encoder W seems redundant and we are curious to investigate its
necessity to the model. To this end, we propose to remove the encoder and
let word embeddings and prototype embeddings share the same vector space.
For instance, if we use a RoBERTa-large [16] as the backbone PLM and set the
dimension of the prototype embeddings to be 64, the original ProtoVerb [3] re-
quires an encoder W ∈ R64×1024 to project word embeddings into the prototype
space. We propose to remove the projection head and set the dimension of the
prototype embeddings to be the same as the word embeddings, e.g., 1024. In
this way, we can directly compute the cosine similarity between word embed-
dings and prototypes, and the model is trained by jointly optimizing the PLM
and the learnable prototype embeddings.

We propose to remove the project head, i.e., the encoder for 2 obvious rea-
sons. First, without the projection head, the overall complexity of the model
can be further reduced as there are fewer trainable parameters. As a conse-
quence, the model in general can be trained more easily with less training time
and fewer computational resources. The second reason lies in the increase in di-
mensionality. According to the standard setting proposed in [3], the dimension
of the prototype embeddings is set to 64 while they used the RoBERTa-large[16]
as the PLM backbone, where the hidden dimension of word embeddings is 1024.
Now that we remove the projection head and allow both word embeddings and
prototype embeddings to share the same vector space, we implicitly increase
the dimension of prototype embeddings to whatever the hidden dimension of
the pretrained language model is. With a higher dimensionality, prototype em-
beddings are capable of capturing much more information than before, which
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can aid the learning process in which the prototypical verbalizer tries to approx-
imate a well-constructed manual verbalizer. However, we do hypothesize that
higher dimensional embeddings require longer training time to converge so we
adjust the training configurations accordingly as will be introduced below.

5 Experiments

We perform a series of comprehensive few-shot learning experiments to demon-
strate the efficacy of our improved method. Specifically, we begin by introducing
the experimental settings and implementation details, followed by a presentation
and analysis of the experimental results.

5.1 Datasets and Prompt Templates

In our experiments, we adopt three text classification datasets: AG’s news,
DBPedia[14], and Yahoo Answers[22]. The information of their test sets are
shown in Table 1.

Dataset #Class #Example

AG’S News 4 7600
DBPedia 14 70000

Yahoo Answers 10 60000

Table 1: Statistics of datasets.

In order to prioritize the verbalizer and mitigate the impact of templates, we
utilize several fixed manual templates. We use the default templates in Open-
Prompt[5]. The details are as follows:

AG’s News. Each sample contains a headline x and a body y. We use the
following templates.

T1(x, y) = A [MASK] news: x y

T2(x, y) = x y This topic is about [MASK].

T3(x, y) = [Category:[MASK]] x y

T4(x, y) = [Topic:[MASK]] x y

DBPedia. Each sample contains an article title x and an article content y. We
use the following templates.

T1(x, y) = x y is a [MASK].

T2(x, y) = x y In this sentence,x is a [MASK].

T3(x, y) = x y The type of x is [MASK].

T4(x, y) = x y The category of x is [MASK].

10



Yahoo Answers. Each sample contains a question x and a answer y. We use
the following templates.

T1(x, y) = A [MASK] question: x y

T2(x, y) = x y This topic is about [MASK].

T3(x, y) = [Category:[MASK]] x y

T4(x, y) = [Topic:[MASK]] x y

5.2 Experiment Settings

In the few-shot scenario, we randomly select k = 1, 2, 4, 8, 16 instances from each
class in the training set, and evaluate the model’s performance on the complete
test set. To be more specific, the final size of the training set is k · c, where
k is the number of few-shot examples and c is the number of classes in total.
In all experiments, we measure classification accuracy as the evaluation metric.
To reduce the impact of randomness in the initialization of the experiments
and ensure that the reported performance is representative and stable across
different runs, we report the mean accuracy scores over 3 random seeds.

5.3 Implementation Details

We implement all of our models and baselines using the PyTorch framework[17],
the Huggingface transformers[21], and the OpenPrompt toolkit[5]. We utilize
the AdamW optimizer to optimize the performance of pretrained language mod-
els. We use the RoBERTa-large[16] as our PLM backbone. When training the
models that are equipped with the projection head, we set the dimension of the
prototype embeddings to be 64, and fine-tune the model for 5 epochs with a
batch size of 2 and a learning rate of 3e-5. As for the training configurations of
the prototype embeddings, we use a learning rate of 0.01 and train the embed-
dings for 30 epochs. As mentioned in the previous section, we hypothesize that
higher dimensional embeddings require longer training time to converge. To this
end, for experiments with shared embedding space, we adjusted the epochs to
tune the PLM and the epochs to train the prototype embeddings to 20 epochs
and 60 epochs respectively while the learning rates are kept the same.

5.4 Results & Analysis

We present experiment results in Table 2, together with baseline performance
reported in [3]. It can be seen that manual verbalizer achieves the highest ac-
curacy across all datasets under all few-shot settings since domain knowledge
is involved to determine the choice of words in the manual verbalizer. Still,
our ProtoVerbmean-init outperforms the original prototypical verbalizer on all
datasets, indicating that the instance mean initialization technique has signif-
icant benefits to the training of prototypes. More notably, as more training
examples become available, i.e., under 8-shot and 16-shot settings, our method
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even outperforms the sophisticatedly constructed manual verbalizer, which co-
incides with our hypothesis that our method is able to learn and aggregate
information that would be contained in a well-designed manual verbalizer with
human efforts.

K Method AG DB Yahoo

0 ManualVerb 75.13 67.06 43.11

1
ManualVerb 76.67 85.47 50.22
ProtoVerb 64.19 72.85 36.12

ProtoVerbmean-init 68.71 89.66 42.00

2
ManualVerb 81.06 93.61 58.65
ProtoVerb 77.34 85.49 46.30

ProtoVerbmean-init 79.45 92.23 57.32

4
ManualVerb 84.73 95.83 61.41
ProtoVerb 81.65 90.91 55.08

ProtoVerbmean-init 84.19 95.35 61.14

8
ManualVerb 85.85 96.46 64.12
ProtoVerb 84.03 95.75 61.40

ProtoVerbmean-init 86.73 96.97 67.47

16
ManualVerb 84.74 96.05 58.77
ProtoVerb 84.48 96.30 64.35

ProtoVerbmean-init 88.06 96.45 65.97

Table 2: Mean accuracy scores (%) of experiments under different few-shot
settings for different datasets. Each accuracy is obtained by taking average
over 3 different random seeds. Manual verbalizer results are italic as they re-
quire domain knowledge. Bold results are the best without domain knowledge.
ProtoVerb represents the original ProtoVerb [3] and its results are directly
retrieved from the paper. ProtoVerbmean-init corresponds to ProtoVerb with
the Instance Mean Initialization technique.

We have also conducted an ablation study to investigate the effectiveness of the
proposed ideas. Specifically, we are curious about the importance of the linear
encoder. Mean accuracy scores on the AG’s News dataset are shown in Table
3. As one can observe, when the available training data are limited, e.g., 1-shot
or 2-shot, the performance of the model without an encoder is worse than that
with an encoder. However, as the number of training examples gets larger, the
encoder-free model outperforms the model with an encoder and its performance
is almost comparable with ProtoVerbmean-init.

Our conjuncture is as follows. When the encoder is removed so that the word
embeddings and the prototype embeddings reside in the same vector space, the
PLM takes over the encoder’s job to produce meaningful word embeddings for
the [MASK] token. In other words, the PLM is expected to output an infor-
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mative embedding that well summarize the input text. Meanwhile, it should
be as close as possible to the prototype embedding of the corresponding class.
This poses a challenging task in terms of fine-tuning the PLM, who has a large
amount of parameters and thus is immensely data-hungry. This explains the
ineffectiveness of sharing embedding space when the data scarcity problem is se-
vere under 1-shot or 2-shot settings. However, as data become more abundant,
sharing embedding space is more comparable with manual verbalizers because a
higher dimension is capable of capturing more information. As a result, the key
message is that when adequate data are provided (e.g., not less than 4-shot),
sharing the embedding space and not using the encoder may achieve better re-
sults. However, extra efforts will be necessary to be spent on searching for the
optimal set of hyperparameters in order to unveil its full potential.

K Encoder Mean Init Accuracy (%)

1
✓ ✓ 68.71
✗ ✓ 58.54
✓ ✗ 64.19

2
✓ ✓ 79.45
✗ ✓ 77.34
✓ ✗ 77.16

4
✓ ✓ 84.19
✗ ✓ 81.65
✓ ✗ 78.74

8
✓ ✓ 86.73
✗ ✓ 84.03
✓ ✗ 85.37

16
✓ ✓ 88.06
✗ ✓ 84.48
✓ ✗ 88.04

Table 3: Ablation study of the 2 proposed ideas over the original ProtoVerb
[3], i.e., instance mean initialization and shared embeddings space. Encoder:
whether or not to use the linear encoder to project word embeddings. Mean
Init: whether or not to use the instance mean initialization technique. The
vanilla ProtoVerb uses the encoder but not Mean Init and its accuracy scores
are in italic as a reference.

Additionally, we have adopted the t-SNE algorithm [20] to visualize the learned
prototype embeddings, as well as the projected word embeddings, as shown in
Figure 2. The dataset used is the AG’s News dataset, consisting of news of 4
categories, i.e., {World, Sports, Business, Tech}. The dimension of the proto-
types is set to 64, and projected onto the 2D space using the t-SNE algorithm.
Note that we do not perform the t-SNE visualization under 1-shot setting as the
result is unlikely to convey meaningful insights with only one example for each
class. We can see that under all few-shot settings, the matched prototypes and
word embeddings are the closest in terms of Euclidean distance, indicating that
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our proposed method is effective. However, we do observe that there exists a
distinct gap between the positions of the prototypes and the word embeddings
as they lie quite away from each other. We conjecture that this heterogeneity
is caused by the training objectives. Since the cosine similarity is used in the
training objectives as the distance metric, the prototypes and word embeddings
are only trained to closer in terms of vector direction instead of the Euclidean
distance. By this token, it is normal to see such significant discrepancies on the
2D plane.
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(a) 2-shot. (b) 4-shot.

(c) 8-shot. (d) 16-shot.

Figure 2: t-SNE visualizations for the trained prototype embeddings and en-
coded word embeddings of the training examples under 2-shot, 4-shot, 8-shot
and 16-shot respectively. Red, yellow, blue and green represent the 4 classes in
the AG News dataset, i.e., World, Sports, Business and Tech. The points with
darker colors are the trained prototype embeddings. The points with lighter
colors are the encoded label word embeddings obtained by filling the template
with the ground truth label word for each training example. Even though there
exists significant gaps between the prototypes and the word embeddings after
projecting them onto the 2D space, one can see evidently that under the 4 few-
shot settings, prototypes and encoded label word embeddings that correspond
to the same class are the closest.
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6 Conclusion

By investigating in previous works of prompt-based tuning methods, our work
further explored on the field of prototypical verbalizers methods. We pro-
posed Instance Mean Initialization technique for prototypical verbalizers, which
achieves better accuracy than the original ProtoVerb model and is also compat-
ible with the manual crafted verbalizers which requires domain knowledges and
heavy laborforce. Our work also proposed the removal of linear encoder and
bringing the prototype embeddings and word embeddings to the same dimen-
son, and our results have shown that our model can capture more information
and achieve better computation efficiency with our architecture.
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grounds, techniques, and discussed about the advantages of two verbalizers:
Soft Verbalizer and Prototypical Verbalizer. I also assisted in training the pro-
posed models and generating the results of our experiments. I helped organized
the final results in the final report, and I examined the whole report for possible
language mistakes and I wrote the main proposed ideas and the contribution of
our work in the Conclusion part in our final report. I will also be responsible
in organizing the flow of our presentation and designing the PowerPoint for our
final presentation.

CHEN, Jiaxuan (21018177): In the Background section of the project proposal,
I introduced the basic concepts of the prompt-based fine-tuning. I participated
in writing the source codes to implement both the proposed methods, and I
conducted most of the experiments for the performance evaluation of both the
proposed methods and the baseline method. For the final project, I wrote the
first three parts of the Experiments section, which introduces the statistics of
the datasets and prompt templates, experiments setting and the implementa-
tion details for the source code. I will also participate in the preparation for the
presentation.

CHEN, Yingan (20972900): In the Verbalizers section of the project proposal,
I introduced two approaches for generating verbalizers: manual verbalizer and
automatic verbalizer search, and compared their pros and cons. In the final
report, I wrote the section of Background to provide a clear and comprehen-
sive overview of the theoretical concepts and methods we are based on, includ-
ing n-way-k-shot few-shot learning, the prompt-based tuning and prototypical
verbalizer, with examples of n-way-k-shot and prompt template, a picture for
illustrating the pipeline of prompt-based tuning and formulas used in the pro-
totypical verbalizer, for readers to understand the concepts more clearly before
we present our innovations.
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HAO, Siyang (21002001): I wrote the section of problem statement for the
project proposal. I also participated in formatting the project proposal. For
the final report, I read papers related to prompt-based tuning and verbalizer
design methods to better understand the concepts of prompt-based tuning and
multiple verbalizer designs, as well as the advantages and disadvantages of dif-
ferent existing verbalizer design methods. I wrote the section of introduction
(excluding the part of summary of novel design) and the section of related work
for the final report. In these two parts, I discussed about the characteristics
of prompt-based tuning and different verbalizers, the limitation of prototypical
verbalizer (which brings up the problem to solve) and other related contents.
For the teamwork, I organized zoom meetings and actively participated in group
discussions. I also emailed the professor to ask our group’s questions related to
the project. I will prepare scripts for presentation and will participate in the
presentation.

SU, Hongchang (20972649): In the Preliminary Methods section of the project
proposal, I proposed the first basic idea, which involves selecting a subset of rep-
resentative instances from the dataset by clustering to improve efficiency without
sacrificing accuracy. In the final report, I summarized the project backgrounds
and the project’s focus on improving the performance of prompt-based tuning
in few-shot scenarios and wrote them into the Abstract section. I am mainly
in charge of producing the project slides. I will summarize the key points from
each section, and I will generate graphs that help express the idea of our project
effectively.

YIN, Zhuohao (20677990): I wrote the second and third part of the Prelim-
inary Methods section in the project proposal. I actively participated in group
meetings and proposed the 2 novel ideas that we have implemented in this
project, i.e., Instance Mean Initialization and Shared Embedding Space. I par-
ticipated in writing the source codes to implement both the proposed methods.
I wrote the whole Method section in the final report and the Results & Analysis
subsection in the Experiments section, including texts, equations and the table
that presents the results of the ablation study. I wrote the codes for generating
the t-SNE visualizations. In the following week, I will be participating in the
preparation for the presentation.
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