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Abstract 

While conventional data science approaches have been applied on various domains to extract 

insights from large quantities of data, spatiotemporal data, due to its structural difference, have 

been poorly explored and exploited. While some classic machine learning algorithms are proven 

to work well with spatiotemporal data, such as K-means, K-Medoids, and EM algorithm, these 

methods can only handle limited data formats and lack interpretability. A remedy for low 

interpretability is through data visualizations.To this end, this UROP project seeks to develop a 

user-friendly API, which allows users to upload spatiotemporal data and produce interactive and 

informative visualizattions.  

 

1. Overview 

Spatiotemporal data refer to data that are related to both space and time. With the 

emergence of a variety of smart devices, such as mobile phones, smart watches, etc., an 

unprecedented amount of data have been recorded each day. However, studying these 

large-scale spatiotemporal data can be challenging and task specific and the insights are 

often presented without reference to the geospatial information visually. This project 

intends to implement a user-friendly visualization toolkit tailor-made for spatiotemporal 

data, where formatted spatiotemporal data can be directly fed into this API and produce 

interactive and intuitive visualizations for users to gain basic insights about how data are 

distributed over both space and time.  
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2. Related Work 

2.1. Application Domains 

Over the past decade, a plethora of learning algorithms have been performed on         

spatiotemporal for the purpose of extracting knowledge and utilizing the information. 

With proper methods, spatiotemporal data can be extremely insightful for multiple 

real-world problems in various domains. For example, in ecology, researchers would 

like to know the geospatial distribution of the habitats of different species and study 

the biological reason behind these facts (Roberts, 2010). In crime control, the 

locations where different type of crimes are committed are crucial information for 

both solving cases and preventing further crimes by properly allocate police forces to 

designated areas (Leipnik & Albert, 2002). 

 

2.2. Classic Machine Learning Approaches on Spatiotemporal Data 

K-means is a classic clustering algorithm that splits data into several possible clusters 

by evaluating the distance between each data point and the mean of each cluster. 

Being a straightforward and computationally simple algorithm, K-means has also 

been applied on spatial data. Sharma et al. (2012) performed the K-means algorithm 

on the Agricultural Statistics of India where they clustered the goegraphical locations 

according to rice production, using an interface called WEKA. However, one major 

drawback of their work is that the outputs are hardly interpretable by people without 

prior knowledge. Additionally, the outputs are not directly related to the geographical 

information, namely maps. Fig. 1 shows an example of their clustering outputs. 

 

Figure 1. An example output of the K-means algorithm performed on spatial data. 



 

2.3. Spatiotemporal Data Visualizations 

Likeminded, Andrienko et al. (2003) proposed a range of techniques to visualize 

spatiotemporal data, including querying, map animation, focusing, linking and 

arranging views. Amongst these techniques, I found the focusing, linking and 

arranging views the most similar to my ideal outputs. Specifically, since 

spatiotemporal data are often in higher dimensions as opposes to other data, the 

concept is to present different subsets of data in different views according to user 

selections. My implementations are primarily based on this technique. 

 

3. System Walkthrough 

As this project serves as a prototype for possible future developments, the scope of 

spatial data is restricted within the city of Hong Kong only for demonstration purposes. 

The system is intend for interactive visualization of spatiotemporal data in Hong Kong. 

Therefore, each data file is associated with an administrative level and a short 

description. The administrative levels follow the same pattern as those on the 

OpenStreeMap Wiki. In specific for Hong Kong, an admin level of 6 separates the whole 

of Hong Kong into 18 administrative districts while an admin level of 5 regards Hong 

Kong as a whole. Data files must be configured in a way where each column stores some 

type of data for all 18 districts, with its semantic as the column name. Overall, the data 

files are assumed to be transformed into a Pandas DataFrame of shape [18, N], where N 

is the number of data for a single admin district. Fig. 2 shows a standard csv file under 

this realm. 

https://wiki.openstreetmap.org/wiki/Key:admin_level


 

Figure 2. An example of the input data format of csv files. 

 

A major bottleneck of spatial data visualization tools is that Javascript frameworks such 

as Leaflet takes geojson files as inputs while common people are unaware how to 

transform their data into geojson formats. It is manifest that there exists a gap between 

the common data formats (xlsx, csv) and the one that is recognizable by Javascript 

frameworks (geojson). Geojson files have a predefined format and follow the format 

strictly. Fig. 3 shows a segment of a geojson file. 

 

Figure 3. An example of geojson data format. 



 

Thus, this project bridges the gap by taking csv files as inputs and preprocess the data to 

generate geojson files at runtime. This saves the users from figuring out the way to 

transform their own data and can benefit from the convenience by simply uploading their 

csv files and viewing visualization outputs. 

 

This system handles single-data and multi-data scenarios differently. A single-data 

scenario is when there is only one data for an administrative area, such as population 

density, air quality index, etc., while multi-data scenario is when the number of data per 

area is larger than one. For single-data scenarios, the system yields a visualization on top 

of the map of Hong Kong, where each admin district is separated and filled by  a color. 

The color is determined by the magnitude of the data inputted. Fig. 4 shows the 

visualized population density for each administrative district of Hong Kong. 

 

Figure 4. A visualization of population density of the 18 administrative districts in Hong Kong. 

 

Under multi-data scenarios, each admin district will be associate with a bar plot 

displaying all columns in the input data. This type of plots are defined as horizontal 

comparisons. Apart from the horizontal comparisons, for each multi-data file, a vertical 

comparison will also be generated, where users can conveniently view a certain column 

of data for each admin district, as shown in Fig. 5. 



 

Figure 5. An illustration of horizontal comparison. 

 

Furthermore, users may select two columns of data in the same file to simultaneously 

view these two columns and possible conlusions may be drawn in terms of correlations of 

the data. For more flexibility, users can also select the type of plot they desire out of 

‘bar’, ‘line’, and ‘scatter’. An example can be seen in Fig. 6. 

 

Figure 6. An illustration of vertical comparison. 

 

As can be seen in Fig. 6, the yellow line represents the income level for the people who 

live in private permanent houses while the green line represents that of the people who 

live in public rented houses. It is evident that the yellow line is lying on top of the green 



line, which indicates that people who live in private permanent houses earn significantly 

more money than those who live in public rented houses. Such insights can also be 

generalized to other types of data. 

 

In short, the horizontal comparisons display all data for one given admin district while 

the vertical comparisons display a given column of data for all the admin districts.  

 

4. Implementation Details 

This project is primarily developed using the Django framework, together with several 

Javascript libraries like Leaflet and Echarts. This section will cover necessary details 

along the development process. 

4.1. Backend 

4.1.1. Models 

Backend development in this project is done using the Django development 

framework using python. In models.py, I defined three models that stores data 

in the database. The first is AdminBoundary(), which is for storing the 

administrative boundaries of a city in forms of latitude and longitude, which 

are extracted using the overpass API. Each AdminBoundary() object stores a 

geojson file that is name by “city_admin_level.json”. For instance, in this demo 

project, there is only one geojson file named “HK_6.json”. The other two 

models are Json() and Table(), which stores data files in forms of json and csv 

respectively. In the Table() class, an admin level and a short description are 

also stored in the database. 

4.1.2. Forms 

As this system enables users to upload their own data, forms are used to 

receive user inputs in the frontend. There are two form classes, respectively 

GeoJsonForm() and TableForm() built on model Json() and Table(). 

4.1.3. Views 

Views in Django are used to handle http responses and link to HTML 

templates. Each view is represented by a python function. There are four 

views in this project, respectively for the home page, the upload page, the 

https://overpass-turbo.eu/


overview of uploaded data and the data visualization page. One thing to notice 

is that data visualization pages are dynamically routed, meaning each 

uploaded data file will be displayed using a unique URL. 

4.2. Frontend 

Frontend components are essentially four HTML documents, responsible for the 

aforementioned four pages. The home page uses the Map.html as the template and all 

other templates extends Map.html. Details can be found in submitted source codes. 

 

5. Discussion and Conclusion 

In this project, I have explored different approaches to displaying spatiotemporal data and 

ahieved interactive visualization reults. However, there are limitations of the current 

system. For example, the system can be further developed to support swithcing between 

time stamps once large quantities of formatted data are available. Additionally, the 

mechanism of storing the data into the database can be further improved so that data 

entries in different files can be viewed and compared simultaneously. 
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