
UROP Report on Large-Scale Spatiotemporal Data

Analytics and Learning

Name: YIN Zhuohao Student ID: 20677990 Email: zyinad@connect.ust.hk

Abstract

While conventional data science approaches have been applied on various domains to extract

insights from large quantities of data, spatiotemporal data, due to its structural difference, have

been poorly explored and exploited. While some classic machine learning algorithms are proven

to work well with spatiotemporal data, such as K-means, K-Medoids, and EM algorithm, these

methods can only handle limited data formats and lack interpretability. A remedy for low

interpretability is through data visualizations.To this end, this UROP project seeks to develop a

user-friendly API, which allows users to upload spatiotemporal data and produce interactive and

informative visualizattions.

1. Overview

Spatiotemporal data refer to data that are related to both space and time. With the

emergence of a variety of smart devices, such as mobile phones, smart watches, etc., an

unprecedented amount of data have been recorded each day. However, studying these

large-scale spatiotemporal data can be challenging and task specific and the insights are

often presented without reference to the geospatial information visually. This project

intends to implement a user-friendly visualization toolkit tailor-made for spatiotemporal

data, where formatted spatiotemporal data can be directly fed into this API and produce

interactive and intuitive visualizations for users to gain basic insights about how data are

distributed over both space and time.

mailto:zyinad@connect.ust.hk

2. Related Work

2.1. Application Domains

Over the past decade, a plethora of learning algorithms have been performed on

spatiotemporal for the purpose of extracting knowledge and utilizing the information.

With proper methods, spatiotemporal data can be extremely insightful for multiple

real-world problems in various domains. For example, in ecology, researchers would

like to know the geospatial distribution of the habitats of different species and study

the biological reason behind these facts (Roberts, 2010). In crime control, the

locations where different type of crimes are committed are crucial information for

both solving cases and preventing further crimes by properly allocate police forces to

designated areas (Leipnik & Albert, 2002).

2.2. Classic Machine Learning Approaches on Spatiotemporal Data

K-means is a classic clustering algorithm that splits data into several possible clusters

by evaluating the distance between each data point and the mean of each cluster.

Being a straightforward and computationally simple algorithm, K-means has also

been applied on spatial data. Sharma et al. (2012) performed the K-means algorithm

on the Agricultural Statistics of India where they clustered the goegraphical locations

according to rice production, using an interface called WEKA. However, one major

drawback of their work is that the outputs are hardly interpretable by people without

prior knowledge. Additionally, the outputs are not directly related to the geographical

information, namely maps. Fig. 1 shows an example of their clustering outputs.

Figure 1. An example output of the K-means algorithm performed on spatial data.

2.3. Spatiotemporal Data Visualizations

Likeminded, Andrienko et al. (2003) proposed a range of techniques to visualize

spatiotemporal data, including querying, map animation, focusing, linking and

arranging views. Amongst these techniques, I found the focusing, linking and

arranging views the most similar to my ideal outputs. Specifically, since

spatiotemporal data are often in higher dimensions as opposes to other data, the

concept is to present different subsets of data in different views according to user

selections. My implementations are primarily based on this technique.

3. System Walkthrough

As this project serves as a prototype for possible future developments, the scope of

spatial data is restricted within the city of Hong Kong only for demonstration purposes.

The system is intend for interactive visualization of spatiotemporal data in Hong Kong.

Therefore, each data file is associated with an administrative level and a short

description. The administrative levels follow the same pattern as those on the

OpenStreeMap Wiki. In specific for Hong Kong, an admin level of 6 separates the whole

of Hong Kong into 18 administrative districts while an admin level of 5 regards Hong

Kong as a whole. Data files must be configured in a way where each column stores some

type of data for all 18 districts, with its semantic as the column name. Overall, the data

files are assumed to be transformed into a Pandas DataFrame of shape [18, N], where N

is the number of data for a single admin district. Fig. 2 shows a standard csv file under

this realm.

https://wiki.openstreetmap.org/wiki/Key:admin_level

Figure 2. An example of the input data format of csv files.

A major bottleneck of spatial data visualization tools is that Javascript frameworks such

as Leaflet takes geojson files as inputs while common people are unaware how to

transform their data into geojson formats. It is manifest that there exists a gap between

the common data formats (xlsx, csv) and the one that is recognizable by Javascript

frameworks (geojson). Geojson files have a predefined format and follow the format

strictly. Fig. 3 shows a segment of a geojson file.

Figure 3. An example of geojson data format.

Thus, this project bridges the gap by taking csv files as inputs and preprocess the data to

generate geojson files at runtime. This saves the users from figuring out the way to

transform their own data and can benefit from the convenience by simply uploading their

csv files and viewing visualization outputs.

This system handles single-data and multi-data scenarios differently. A single-data

scenario is when there is only one data for an administrative area, such as population

density, air quality index, etc., while multi-data scenario is when the number of data per

area is larger than one. For single-data scenarios, the system yields a visualization on top

of the map of Hong Kong, where each admin district is separated and filled by a color.

The color is determined by the magnitude of the data inputted. Fig. 4 shows the

visualized population density for each administrative district of Hong Kong.

Figure 4. A visualization of population density of the 18 administrative districts in Hong Kong.

Under multi-data scenarios, each admin district will be associate with a bar plot

displaying all columns in the input data. This type of plots are defined as horizontal

comparisons. Apart from the horizontal comparisons, for each multi-data file, a vertical

comparison will also be generated, where users can conveniently view a certain column

of data for each admin district, as shown in Fig. 5.

Figure 5. An illustration of horizontal comparison.

Furthermore, users may select two columns of data in the same file to simultaneously

view these two columns and possible conlusions may be drawn in terms of correlations of

the data. For more flexibility, users can also select the type of plot they desire out of

‘bar’, ‘line’, and ‘scatter’. An example can be seen in Fig. 6.

Figure 6. An illustration of vertical comparison.

As can be seen in Fig. 6, the yellow line represents the income level for the people who

live in private permanent houses while the green line represents that of the people who

live in public rented houses. It is evident that the yellow line is lying on top of the green

line, which indicates that people who live in private permanent houses earn significantly

more money than those who live in public rented houses. Such insights can also be

generalized to other types of data.

In short, the horizontal comparisons display all data for one given admin district while

the vertical comparisons display a given column of data for all the admin districts.

4. Implementation Details

This project is primarily developed using the Django framework, together with several

Javascript libraries like Leaflet and Echarts. This section will cover necessary details

along the development process.

4.1. Backend

4.1.1. Models

Backend development in this project is done using the Django development

framework using python. In models.py, I defined three models that stores data

in the database. The first is AdminBoundary(), which is for storing the

administrative boundaries of a city in forms of latitude and longitude, which

are extracted using the overpass API. Each AdminBoundary() object stores a

geojson file that is name by “city_admin_level.json”. For instance, in this demo

project, there is only one geojson file named “HK_6.json”. The other two

models are Json() and Table(), which stores data files in forms of json and csv

respectively. In the Table() class, an admin level and a short description are

also stored in the database.

4.1.2. Forms

As this system enables users to upload their own data, forms are used to

receive user inputs in the frontend. There are two form classes, respectively

GeoJsonForm() and TableForm() built on model Json() and Table().

4.1.3. Views

Views in Django are used to handle http responses and link to HTML

templates. Each view is represented by a python function. There are four

views in this project, respectively for the home page, the upload page, the

https://overpass-turbo.eu/

overview of uploaded data and the data visualization page. One thing to notice

is that data visualization pages are dynamically routed, meaning each

uploaded data file will be displayed using a unique URL.

4.2. Frontend

Frontend components are essentially four HTML documents, responsible for the

aforementioned four pages. The home page uses the Map.html as the template and all

other templates extends Map.html. Details can be found in submitted source codes.

5. Discussion and Conclusion

In this project, I have explored different approaches to displaying spatiotemporal data and

ahieved interactive visualization reults. However, there are limitations of the current

system. For example, the system can be further developed to support swithcing between

time stamps once large quantities of formatted data are available. Additionally, the

mechanism of storing the data into the database can be further improved so that data

entries in different files can be viewed and compared simultaneously.

References

Andrienko, N., Andrienko, G., & Gatalsky, P. (2003). Exploratory spatio-temporal visualization:

an analytical review. Journal of Visual Languages & Computing, 14(6), 503-541.

Leipnik, M. R., & Albert, D. P. (Eds.). (2002). GIS in law enforcement: Implementation issues

and case studies. CRC Press.

Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., & Halpin, P. N. (2010). Marine Geospatial

Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS,

Python, R, MATLAB, and C++. Environmental Modelling & Software, 25(10), 1197-

1207.

Sharma, R., Alam, M. A., & Rani, A. (2012, August). K-means clustering in spatial data mining

using weka interface. In International conference on advances in communication and

computing technologies (ICACACT) (Vol. 26, p. 30).

